当前位置: 首页 > 人员构成 > 副教授 > 正文

肖理业(博导)

个人信息

姓名:肖理业

邮箱:liyexiao16@xmu.edu.cn

教育经历

² 博士

20159月—20196 电子科技大学(因成绩优异,获准提前一年毕业)

物理学院 专业:无线电物理 导师:邵维 教授

20159 学术专长保送直接攻读博士学位

² 本科

20119月—20156 电子科技大学

物理电子学院 专业:电子信息科学与技术

研究经历

² 20217月—至今 厦门大学电子科学与技术学院

南强青年拔尖人才支持计划” B 副教授

² 博士后 博士后创新人才支持计划(博新计划)

20197月—至今 厦门大学电子科学与技术学院

² 海外经历

20183月—201810 美国杜克大学 联合培养博士

科学研究

研究领域

² 复杂目标电磁散射与逆散射

² 基于机器学习生物电磁学的超分辨率成像及应用

² 基于机器学习的器件、天线与阵列的智能建模和设计

² 基于机器学习的集成电路计算光刻方法

研究项目

² 基于机器学习电磁逆散射的三维高分辨率全脑成像研究,国家自然科学基金青年科学基金(批准号:62001406),2021.01-2023.1224万元,在研,主持。

² 基于图像重建的电磁逆散射成像研究,中国博士后科学基金博士后创新人才支持计划(批准号:BX20190181),2019.07-2021.0760万元,在研,主持。

学术兼职和社会服务:

IEEE Member担任《IEEE   Transactions on Antennas and Propagation》、《IEEE Transactions on Microwave Theory and   Techniques》、《IEEE Antennas and Wireless Propagation Letters》和《IEEE Transactions on Circuits and Systems II: Express Briefs》审稿人。

研究成果

肖理业博士从事电磁场理论、计算电磁学及机器学习等方面的研究:包括非均匀介质电磁散射与逆散射、基于机器学习电磁逆散射的全脑超分辨率成像与异常体检测、基于机器学习的有限周期阵列、稀疏阵列及相控阵等微波器件的多参数高效建模与设计、基于机器学习的集成电路计算光刻方法等研究,具有丰富的研究经验和优秀的研究成果。系列成果已以第一/通讯作者身份在包括《IEEE Transactions on Antennas and Propagation》、《IEEE Transactions on Microwave Theory and   Techniques》和《IEEE Antennas and Wireless Propagation Letters》在内的SCI检索的国际一流期刊发表/接收论文24,其中中科院JCR一区论文18篇,JCR二区论文4篇。其中,3篇以第一作者身份发表的论文入选ESI高被引论文和研究热点,是近十年全球工程领域SCI论文被引频次前1%为当今学术前沿,得到了国内外同行广泛关注与引用。

2019年入选人社部博士后创新人才支持计划(全国共400人入选,其中电子科学与技术学科入选14人);2020年获得国家自然科学基金青年科学基金;2020年获得“博士后创新人才支持计划优秀创新成果”(全国共100项)


获得奖励

202012

获得“博士后创新人才支持计划优秀创新成果”(全国100项)

202012

获得中国电子教育学会2020年度优秀博士学位论文提名奖

201812

获得成电杰出学生(研究生)全校共10人,电子科技大学最高学生荣誉。

201811

获得2019四川省优秀毕业生






SCI论文列表:

[1] L. Y. Xiao, J. Li, F. Han, M. Zhuang*, Q. H. Liu*, “Super-resolution 3-D microwave imaging of objects with high contrasts by a semijoin extreme learning machine”, IEEE Transactions on Microwave Theory and Techniques, Early access, 2021.

[2] H. J. Hu, L. Y. Xiao*, J.N. Yi, Q. H. Liu, “Nonlinear electromagnetic inversion of damaged experimental data by a receiver approximation machine learning method”, IEEE Antennas and Wireless Propagation Letters, Early access, Apr. 2021.

[3] L. Y. Xiao, W. Shao*, F. L. Jin, B. Z. Wang, Q. H. Liu, “Inverse artificial neural network for multi-objective antenna design”, IEEE Transactions on Antennas and Propagation, Early access, Apr. 2021.

[4] L. Y. Xiao, W. Shao*, F. L. Jin, B. Z. Wang, Q. H. Liu, “Radial basis function neural network with hidden node interconnection scheme for thinned array modeling”, IEEE Antennas and Wireless Propagation Letters, Early access, Nov. 2020.

[5] L. Y. Xiao, J. Li, F. Han*, W. Shao, Q. H. Liu*, “Dual-module NMM-IEM machining learning for fast electromagnetic inversion of inhomogeneous scatterers with high contrasts and large electrical dimensions”, IEEE Transactions on Antennas and Propagation, vol. 68, no. 8, pp. 6245-6255, Aug. 2020.

[6] L. Y. Xiao, F. L. Jin, B. Z. Wang, Q. H. Liu, W. Shao*, “Efficient Inverse Extreme Learning Machine for Parametric Design of Metasurfaces”, IEEE Antennas and Wireless Propagation Letters, vol. 68, no. 4, pp. 1260-1269, Apr. 2020, DOI: 10.1109/LAWP.2020.2986023

[7] L. Y. Xiao, W. Shao*, F. L. Jin, B. Z. Wang,W. Joines, Q. H. Liu, “Semi-supervised radial basis function neural network with an effective sampling strategy”, IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 4, pp. 1260-1269, Apr. 2020, DOI: 10.1109/TMTT.2019.2955689

[8] L. Y. Xiao, W. Shao*, X. Ding, B. Z. Wang, W. Joines, Q. H. Liu, “Parametric modeling of microwave components based on semi-supervised learning”, IEEE Access, vol. 7, pp.35890-35897, Mar. 2019. DOI: 10.1109/ACCESS.2019.2904765

[9] L. Y. Xiao, W. Shao*, X. Ding, Q. H. Liu, W. Joines, “Multi-grade artificial neural network for the design of finite periodic arrays”, IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 3109-3116, May 2019. DOI: 10.1109/TAP.2019.2900359

[10] L. Y. Xiao, W. Shao*, X. Ding, B. Z. Wang, “Dynamic adjustment kernel extreme learning machine for microwave component design”, IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4452-4461, Oct. 2018. DOI: 10.1109/TMTT.2018.2858787

[11] L. Y. Xiao, W. Shao*, F. L. Jin, B. Z. Wang, “Multi-Parameter modeling with ANN for description of antenna performance”, IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3718-3723, Jul. 2018. DOI: 10.1109/TAP.2018.2823775

[12] L. Y. Xiao, W. Shao*, S. B. Shi, B. Z. Wang, “Extreme learning machine with a modified flower pollination algorithm for filter design”, Applied Computational Electromagnetics Society Journal, vol. 33, No. 3, Mar. 2018. WOS:000431376500005

[13] L. Y. Xiao, W. Shao*, Z. X. Yao, S. S. Gao, “Data mining techniques in artificial neural network for UWB antenna design”, Radioengineering, vol. 27, no. 1, pp. 70-78, Apr. 2018. DOI:10.13164/re.2018.0070

[14] L. Y. Xiao, W. Shao*, F. L. Jin, Z. C. Wu, “A self-adaptive kernel extreme learning machine for short-term wind speed forecasting,” Applied Soft Computing Journal, vol. xx, 2020. DOI: 10.1016/j.asoc.2020.106917

[15] L. Y. Xiao, W. Shao*, M. X. Yu, J. Ma, C. J. Jin, “Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting,” Applied Energy, vol. 198, pp. 203-222, Jul. 2017. DOI: 10.1016/j.apenergy.2017.04.039

[16] L. Y. Xiao, F. Qian, W. Shao*, “Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm,” Energy Conversion and Management, vol. 143, pp. 410-430, Jul. 2017. (ESI highly citedDOI:10.1016/j.enconman.2017.04.012

[17] L. Y. Xiao, W. Shao*, M. X. Yu, J. Ma, C. J. Jin, “Research and application of a combined model based on multi-objective optimization for electrical load forecasting,” Energy, vol. 119, pp. 1057-1074, Jan. 2017. DOI:10.1016/j.energy.2016.11.035

[18] L. Y. Xiao, W. Shao*, C. Wang, K. Q. Zhang, H. Y. Lu, “Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting,” Applied Energy, vol. 180, pp. 213-233, Oct. 2016.DOI :10.1016/j.apenergy.2016.07.113

[19] L. Y. Xiao, W. Shao*, T. L. Liang, C. Wang, “A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting,” Applied Energy, vol. 167, pp. 135-153, Apr. 2016. (ESI highly cited) DOI:10.1016/j.apenergy. 2016.01.050

[20] L. Y. Xiao, J. Z. Wang*, R. Hou, J. Wu, “A combined model based on data preanalysis andweight coefficients optimization for electrical load forecasting,” Energy, vol. 82, pp. 524- 549, Mar. 2015. (ESI highly cited DOI:10.1016/j.energy.2015.01.063

[21] L. Y. Xiao, J. Z. Wang*, X. S. Yang, L. Y. Xiao, “A hybrid model based on data preprocessing for electrical power forecasting,” International Journal of Electrical Power & Energy Systems, vol. 64, pp. 311-327, Jan. 2015. DOI:10.1016/j.ijepes.2014.07.029

(*通讯作者)

授权专利

肖理业,邵维,喻梦霞. 一种基于神经网络的多参数电磁场建模仿真方法. 中国发明专利,专利号: ZL 2017 1 1145631.2



    版权所有@厦门大学电磁声学研究院
    地址: 福建省厦门市思明南路厦门大学 邮编 361005